Variant hunters in U.K. lead race against covid-19

Genome sequencing said vital

A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)

LONDON -- On March 4, 2020, when there were just 84 confirmed cases of covid-19 in the U.K., professor Sharon Peacock recognized that the country needed to expand its capacity to analyze the genetic makeup of the virus.

The Cambridge University microbiologist understood that genomic sequencing would be crucial in tracking the disease, controlling outbreaks and developing vaccines. So she began working with colleagues around the country to put together a plan. Within a month, the government had provided $28 million to fund their work.

The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of covid-19 infections, generating more than 40% of the genomic sequences identified to date. These days, their top priority is finding new variants that are more dangerous or resistant to vaccines, information that is critical to helping researchers modify the vaccines or develop new ones to combat the ever-changing virus.

Genomic sequencing is essentially the process of mapping the unique genetic makeup of individual organisms -- in this case the virus that causes covid-19. While the technique is used by researchers to study everything from cancer to outbreaks of food poisoning and the flu virus, this is the first time authorities are using it to provide real-time surveillance of a global pandemic.

Peacock, 62, heads Britain's sequencing effort as executive director and chair of the Covid-19 UK Genomics Consortium, the group she helped create a year ago.

During the first week of this month, the consortium sequenced 13,171 viruses, up from 260 during its first 12 days of operation in March last year.

Behind that growth is a system that links the science of genomic sequencing with the resources of Britain's national health care system.

Positive covid-19 tests from hospitals and community testing programs around the country are sent to a network of 17 laboratories, where scientists extract the genetic material from each swab and analyze it to identify that virus' unique genetic code. The sequences are then cross-referenced with public health data to better understand how, where and why covid-19 is spreading.

When mutations in the virus correspond with an otherwise unexplained increase in cases, that's a clue that a new variant of concern is circulating.

The importance of genomic sequencing became obvious late last year as the number of new infections began to spike in southeastern England. When cases continued to rise despite tough local restrictions, public health officials went to work to find out why.

Combing through data from genome sequencing, scientists identified a new variant that included a number of mutations that made it easier for the virus to hop from one person to another. Armed with this information, Prime Minister Boris Johnson imposed a national lockdown, scrapping a strategy of local restrictions that had failed to contain the new variant.

The scientific sleuthing is crucial, but it's like looking for a needle in a haystack. Researchers must sift through the genetic sequences from thousands of harmless variants to find the rare dangerous ones, Peacock said.

The effort is a worldwide collaboration, with more than 120 countries submitting sequences to GISAID, a data-sharing hub originally created to track influenza viruses.

Iceland, Australia, New Zealand and Denmark actually sequence a higher percentage of their covid-19 cases than Britain, and Denmark does the work faster. But the consortium's work, combined with Britain's size and high number of cases, have made it the world leader in sequencing covid-19. The U.K. has submitted 379,294 of the almost 898,000 sequences in the GISAID database.

That work is paying dividends even for advanced countries like Denmark, where scientists use tools developed in Britain to analyze their own data, said Mads Albertsen, a professor at Denmark's Aalborg University who is part of the country's genomic sequencing effort.

The U.S. is also trying to learn from Britain as the Biden administration reverses the anti-science policies of his predecessor that slowed the country's sequencing efforts, said Eric Topol, chair of innovative medicine at Scripps Research in San Diego. Representatives from the consortium took part in a recent call with American researchers and the Rockefeller Foundation aimed at building capacity in the United States.

"To Peacock and the crew's credit, they didn't just stop at sequence," Topol said. "They organized labs to do this other work, which is actually very intensive lab assessment. And then there's the epidemiologic assessment, too. So everything has to fire on every cylinder, you know. It's like a car with 12 cylinders. They all have to fire to move."

A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant points at a picture of a cluster of Covid-19 RNA molecules on a computer screen at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant points at a picture of a cluster of Covid-19 RNA molecules on a computer screen at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A robot takes Covid-19 RNA out of test assay plates delivered by Coronavirus testing centres to the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A robot takes Covid-19 RNA out of test assay plates delivered by Coronavirus testing centres to the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant observes a robot taking Covid-19 RNA out of assay plates delivered by Coronavirus testing centres at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant observes a robot taking Covid-19 RNA out of assay plates delivered by Coronavirus testing centres at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
A lab assistant uses a pipette to prepare Coronavirus RNA for sequencing at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021. Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
Professor Sharon Peacock poses for a photograph at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021.Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)
Professor Sharon Peacock poses for a photograph at the Wellcome Sanger Institute that is operated by Genome Research in Cambridge, Thursday, March 4, 2021.Cambridge University microbiologist Sharon Peacock understood that genomic sequencing would be crucial in tracking the coronavirus, controlling outbreaks and developing vaccines, so she began working with colleagues around the country to put together a plan when there were just 84 confirmed cases in the country. The initiative helped make Britain a world leader in rapidly analyzing the genetic material from large numbers of COVID-19 infections, generating more than 40% of the genomic sequences identified to date.(AP Photo/Frank Augstein)

Upcoming Events